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Abstract—Deoxyribonucloside 3�-boranophosphate derivatives including adenine, cytosine, guanine, and thymine bases were
synthesized in good yields by the use of a new boranophosphorylating reagent. The reaction was successfully applied to the
formation of internucleotidic boranophosphate linkages. © 2002 Published by Elsevier Science Ltd.

Oligodeoxyribonucleotides bearing internucleotidic
boranophosphate linkages (boranophosphate DNA)
are regarded as potentially useful antisense molecules.1

The methods reported so far for the synthesis of this
DNA analog are accomplished by constructing an
oligonucleotide chain by the phosphoramidite or H-
phosphonate approach, followed by boronation of the
corresponding trivalent phosphite intermediate.2–5

Undesirable side reactions, however, occur at the base
moieties in the boronation step which are caused by the
borane reagent.3,4,6,7 Thus, the methods are applicable
only to the synthesis of thymine derivatives, in which
the thymidine moiety is less reactive to the borane
reagent. In this paper, we wish to describe a new
boranophosphorylation reaction, which can be applied
to the synthesis of deoxyribonucleoside boranophos-
phates including A, C, and G as well as T without
incurring side reactions at the base moieties.

Mononucleoside 3�-boranophosphate derivatives have
not been used as starting materials to date for the
synthesis of oligonucleotides having boranophosphate
linkages. Imamoto et al.8 have employed tetramethyl
boranopyrophosphate (1) and potassium dimethyl
boranophosphate (2) as new reagents for boranophos-
phorylation (Scheme 1). Since the boranophosphorylat-
ing reagent 1 is less reactive for the nucleophilic attack
of an alcohol, activation of the hydroxyl function
should be required; t-BuLi was used as a strong base to
generate the corresponding alkoxide at −78°C in THF.8

However, this reaction is apparently not suitable for
solid-phase synthesis of oligomers.

Therefore, we tried to activate the boranophosphorylat-
ing reagent 1 by using a nucleophilic catalyst, such as
N-methylimidazole (MeIm)9 or 3-nitro-1,2,4-triazole
(NT).10 First, the nucleoside 6t was allowed to react
with 1 in the presence of MeIm in THF; the bora-
nophosphorylation proceeded with partial removal of
the borano group (31P NMR analysis). A similar reac-
tion by using NT as an activator did not take place at
all. In contrast, when a strong base such as Et3N or
i-Pr2NEt was added to the reaction mixture for the
deprotonation of NT, the boranophosphorylation pro-
ceeded smoothly without loss of the borano group.
Thus, the desired 5�-O-dimethoxytrityl-thymidin-3�-yl
dimethyl boranophosphate (7t) was obtained in 41%
yield.11 In this reaction, the putative intermediate 3,
which is highly reactive and susceptible to hydrolysis,
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would be formed. Therefore, in order to improve the
yield, we tried to generate the reactive intermediate 3 in
situ from potassium dimethyl boranophosphate (2) and
NT in the presence of a condensing reagent, which can
eliminate a trace amount of water from the reaction
mixture. However, the potassium salt 2 was found to be
inefficient for the reaction because of its low solubility
in organic solvents. In order to overcome this problem,
we selected triethylammonium dimethyl boranophos-
phate (5) as a starting material for 3, which could be
synthesized from dimethyl trimethylsilyl phosphite (4)12

in quantitative yield (Scheme 2).

The reaction of the resulting 5 with 6t in the presence of
1-mesitylenesulfonyl-3-nitro-1,2,4-triazole (MSNT)13

and Et3N proceeded quickly to give the desired 7t in
32% yield, accompanied with the formation of a 3�-O-
sulfonylated product as a by-product in 42% yield. This
result indicates that MSNT reacts with the 3�-hydroxy
group of 6t as well as the boranophosphate anion of 5.
Therefore, we tested several condensing reagents, which
were not able to react with the 3�-hydroxyl group of 6t.
As a result, N,N �-bis(2-oxo-3-oxazolidinyl)phosphonic
chloride (Bop-Cl)14 was found to be an effective con-
densing reagent for the present boranophosphorylation.
It was also found that i-Pr2NEt was more effective than
Et3N in the reaction. Thus, the condensation of the
nucleoside 6t with 5 in the presence of Bop-Cl, NT, and
i-Pr2NEt in THF proceeded quickly, and the desired
product 7t was obtained in 91% yield without any
by-products.15 In a similar manner, 5�-O-dimethoxy-
trityl-6-N-benzoyldeoxyadenosin-3�-yl dimethyl bora-
nophosphate (7a), and 5�-O-dimethoxytrityl-4-N-ben-
zoyldeoxycytidin-3�-yl dimethyl boranophosphate (7c)
were synthesized in good yields from 6a and 6c, respec-
tively (Table 1). In the case of the deoxyguanosine
derivative 6g, the formation of the 6-O-boranophos-
phorylated product was observed to some extent by a
TLC analysis. However, the dimethyl boranophospho-

Table 1. Synthesis of deoxyribonucleoside 3�-boranophos-
phates

B Yield (%)Entry

7�86�7

1 Adbz 88 93
92Cybz2 96

3 73Gupa 87
97914 Th

ryl group at the 6-O-position was readily hydrolyzed
during the aqueous work-up of the reaction mixture
to give 5�-O-dimethoxytrityl-2-N-(phenylacetyl)deoxy-
guanosin-3�-yl dimethyl boranophosphate (7g) in good
yield.

One of the methyl groups in the boranophosphate
triesters 7 could be deprotected by treatment with
PhSH-Et3N-THF16 to give the corresponding diesters 8
in excellent yields (Table 1).17 It is noteworthy that the
methylation at the base moieties18 was not observed
during the demethylation of 7.

The present boranophosphorylation reaction could be
successfully applied to an internucleotidic boranophos-
phate triester bond formation. The monomer 8t was
easily condensed with 3�-O-benzoylthymidine (9) in the
presence of Bop-Cl, NT, and i-Pr2NEt in THF to give
the fully protected dimer 10t in 92% yield.19

Next, removal of the protecting groups was attempted.
It is well known that the dimethoxytrityl cation
(DMTr+) reacts with borane groups, resulting in the
decomposition of internucleotidic linkages.4,7 There-
fore, we used Et3SiH as a DMTr+ scavenger for the

Scheme 3.
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deprotection of the DMTr group.20 When 7t, as a
model compound, was treated with 3% dichloroacetic
acid (DCA) in CH2Cl2 without any scavenger, about
20% by-products were observed after 30 min (31P NMR
analysis). On the other hand, when 7t was treated with
3% DCA in CH2Cl2/Et3SiH (3:1 and 1:1, v/v), by-prod-
ucts decreased to about 10% and 0%, respectively, after
30 min (31P NMR analysis). Since in this reaction, the
DMTr group was removed within less than 1 min, we
decided to use the latter conditions, and the fully
protected dimer 10t was treated with 3% DCA in
CH2Cl2/Et3SiH (1:1, v/v) to give the 5�-O-free com-
pound 11t. Finally, the other protecting groups in 11t
were removed by a conventional procedure2 to yield the
dinucleoside boranophosphate 12t in 92% yield
(Scheme 3). The structure of 12t was confirmed by 1H,
13C, 31P NMR spectrum and RP-HPLC analysis, and
no side-products were found.

In conclusion, we have developed a novel strategy for
the boranophosphorylation of nucleosides including A,
C, G, and T. The present strategy essentially eliminates
the troublesome side reactions, caused by a borane
reagent, which were unavoidable in the previously
reported procedures. Therefore, our method will be
useful for the synthesis of oligonucleotides bearing
boranophosphate linkages. Solid-phase synthesis of
oligomers is now in progress.
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